

Booklet No.:

VVS1

Electrical & Electronics Engineering

Duration of Test: 2 Hours					Max. Marks: 100			
	Hall Ticket No.							
Name of the Candidate :								

INSTRUCTIONS

- 1. This Question Booklet consists of **100** multiple choice objective type questions to be answered in **2** hours.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

VVS1-A

ELECTRICAL AND ELECTRONICS ENGINEERING (EE)

PART – A

1.	The (A)	main purpose of decrease iron		-	ansform	ner is to			
	(B)	eliminate ma							
	(C)	reduce reluct	_	•	า เกลอกส	etic circuit			
	(D)	prevent eddy							
2.	A 22	20 V separately	v excit	ted dc motor	takes 2	0 A and the a	rmatur	e resistance is 1	.0 Ω. If
		rmature consta							-
	(A)	1000 rpm	(B)	$2000/\pi$	(C)	$3000/\pi \text{ rpm}$	(D)	$4000/\ \pi\ rpm$	
3.	redu		ng an e	external resist	ance in	the rotor circu	iit and	05. The speed is the slip is 0.15.	
	(A)	$0.2~\Omega$	(B)	$0.3~\Omega$	(C)	$0.4~\Omega$	(D)	$0.5~\Omega$	
4.		n a V-V three city of the syst	-	e transformer	system	is converted	into a	Δ - Δ system, inc	erease in
	(A)	86.6%	(B)	50%	(C)	57.7%	(D)	73.2%	
5.		load is supplisferred power f	-				sformat	tion ratio. Cond	uctively
	(A)	2.1 kW	(B)	0.9 kW	(C)	4.29 kW	(D)	3 kW	
6.		nber of commu luctor per layer		pars for a 4-p	ole, 2-l	ayer, DC lap	windin	g with 24 slots	and one
	(A)	48	(B)	24	(C)	192	(D)	96	
7.	The	torque develop	ed by	any 3-phase i	inductio	on motor at 0.8	3 p.u. s	lip is	
	(A)	Full-load tord	•	, o F	(B)	unstable torc	-	_F	
	(C)	starting torqu	-		(D)	break down			
8.		E _b /V ratio of a e applied volta				of its	(E	b is the back em	nf and V
	(A)	Speed regular	tion		(B)	Starting torq	ue		
	(C)	Efficiency			(D)	Running toro	que.		
9.	Whi		wing	test is usually	y condu	cted to deterr	nine th	ne efficiency of	traction
	(A)	Field's test			(B)	Swinburne's	test		
	(C)	Hopkinson's	test		(D)	Retardation	test.		
A					2				EE

10.		8-pole, 50Hz, per loss of 5kW			on mo	tor is running	g at 70	05rpm aı	nd has a rotor
	(A)	5.06 kW		-	(B)	0.3 kW			
	(C)	100 kW			(D)	83.33 kW			
11.	prod	phase, 4-pole, uced by the rot 1500	or rota		of			pect to sta	e rotating field ator field.
12.	as lo	w as				n motors is ter	ndency	to run s	stably at speeds
	(A)		•	-					
	(B)		-	nchronous spe					
	(C) (D)	One-seventh of One-ninth of		•	-				
13.		starting torque between its two		•			is dire	ctly relat	ted to the angle
		$\cos \theta$	(B)			$\tan \theta$	(D)	$\sin \theta/2$	
14.	The is	fractional-pitch	used	for eliminatin	g 7 th h	armonic from	the en	nf wave	of an alternator
	(A)	2/3	(B)	5/6	(C)	7/8	(D)	6/7	
15.	has a	•	ertia o	f 10 ⁷ kg-m ² in	ı its ro	otating parts. It	t has a	synchro	an infinite bus onous reactance
		7.874 sec		•		15.748 sec			
	(C)	23.622 sec			(D)	24.9 sec			
16.		llel with anothe	r iden		is inc		y of a	n alterna	ator running in
	(B)					ect to the othe	r macl	nine	
	(C)			in load will in	-				
	(D)	Its power fact	or wo	uld be decreas	ed.				
17.		effect of increa	_	•		s motor runnin	g with	normal	excitation is
	(A)			and power fact					
	(B)			rease power fa					
	(C) (D)	Decrease both		ease power fad d power factor					
A	. /			-	3				EE

10.

18.		smission lines		•	luce				
	(A)	Ferranti effec		· ·					
	(B)	Skin effect ar		=					
	(C)	•		d current dens	•				
	(D)	Interference v	with n	eighboring con	nmuni	cation lines			
19.		ne base curren ectively, per-ur		_		•		3000 A and 300 spectively are	0 kV
	(A)	1.15 pu, 115	Ω		(B)	1.15 pu, 10	Ω 00		
	(C)	0.87 pu, 115	Ω		(D)	0.87 pu, 10	Ω 00		
20.	The it wi		ce of a	a 60 miles long	g unde	rground cabl	le is 50 c	2. For a 30 miles lo	ength
	(A)	25 Ω	(B)	50 Ω	(C)	100Ω	(D)	200Ω	
21.	220 econ (A)	kV. The maximomical size, the 28.2 mm	num p	ermissible stre	ess in to ter of to (B)	he dielectric the cable is 26.4 mm	•	with a peak volta exceed 20 kV/mm	_
	(C)	24.4 mm			(D)	22.0 mm			
22.		nging chart is u							
	(A)	_	-		(B)	the design			
	(C)	the design of	insula	tor string	(D)	finding the	distance	between towers	
23.		• • •				-		d ground capacitants string efficiency 84%	
24.		5-bus test syste elements are the				n lines and o	ne transf	former, how many	non-
	(A)		(B)	12	(C)	11	(D)	19	
25.		ectively. Which	n of th r flow	e following sta s from genera	atemer	nt is correct?	•	$0.92 \angle 10^{\circ}$ and 1.	
	(B)		_	eactive power	flows	from genera	tor to Inf	finite bus.	
	(C)	-	er flo	ws from gene		_		ctive power flows	from
	(D)		_	eactive power	flows	from Infinite	e bus to g	generator.	
A					4				EE

18.

26.	A sh	unt fault is cha	aracteri	zed by					
	(A)	Increase in c	urrent,	frequency and	l pf				
	(B)	Increase in c	urrent,	reduction in fi	requen	cy and pf			
	(C)	Increase in c	urrent a	and frequency,	reduc	tion in pf			
	(D)	Decrease in o							
2=									
27.		actance relay i							
	` /	Voltage restr			•				
	(B)			ed over-curren	•	7			
	` ′	Voltage restr			•				
	(D)	Directional r	estraine	ed over voltage	e relay	7			
28.	In a	132 kV syster	m, the l	ine to ground	capac	eitance is 0.0	01μF and	the inducta	ance is 4 H.
		t is value of v			oss th	e CB pole,	if the ma	gnetizing c	urrent to be
		rupted is 5A (i		· ·					
	(A)	132 kV	(B)	10 kV	(C)	220 kV	(D)	100 kV	
29.	The	inertia constar	nts of t	wo grouns of	mach	ines which	swing to	ogether are	M ₁ and M ₂
_>•		inertia constan			11144011		swing to	gemer are	111 unu 1112.
	(A)	$\frac{M_1M_2}{M_1+M_2}$			(B)	$M_1 - M_2$, l	$M_1 > M_2$		
							-1 /2		
	(C)	$M_1 + M_2$			(D)	$\frac{M_1 + M_2}{M_1 M_2}$			
20	TE1	٠, 1			1	16	T. 01	. G' : B	.• •
30.		per unit synch	ronous	reactance of a			. Its Shor	t Circuit Ra	t10 1S
	(A)	1.6			(B)				
	(C)	0.8			(D)	0.625			
31.		ise control of to be minimized l			enteri	ng the transi	nission a	nd distribut	ion systems
	(A)	synchronous	conder	iser					
	(B)	static VAR c							
	(C)	capacitor bar	•						
	(D)	-		eactor in paral	lel wit	h capacitor			
22	TC1	1' 1	1		1.	C .1	1		1.
32.	10 k	sending end V/ph and 9.5 bower factor is	kV/ph,	respectively.	If the	resistance	-		
	(A)	0.745 lagging		io somaning ond	(B)	0.775 lagg	ino		
	(C)	0.743 lagging	5		(D)	-	•		
	(0)	o.o mggmg			(D)	o.oo laggii	. 8		

33.	volta	e distributor of ages, is uniform	_			n run. '	The po	wer loss				equal
	(A)	$\frac{i^2rl^3}{3}$				(B)	$\frac{i^2rl^3}{4}$					
	(C)	$\frac{i^2rl^3}{3}$ $\frac{i^2rl^3}{8}$				(D)	$\frac{i^2rl^3}{4}$ $\frac{i^2rl^3}{12}$					
34.	Coro (A) (B) (C) (D)	ona loss in trans using small d using bundled using less spa increasing the	iameted cond cing b	er condu uctors between	ctors conduc	ctors	ed by					
35.		000 kVA, 11 0.12 p.u. The a	ctual	value of	x_1 refe	erred to	the le	ow volta			has reac	tance,
	(A)	$0.85~\Omega$	(B)	3.63Ω		(C)	36.3	Ω	(D)	252Ω		
36.	The in (A)	number of com 16	parato (B)	ors requi 15	red in	a 4 bit (C)	_	arator ty	pe AD (D)			
37.	40 ks	5 bit weighted Ω , and the resist 0.4 k Ω				ding to		will be	alue co	orrespond 2.5 kΩ	ing to L	SB is
38.	A sw (A)	vitch tail ring co T-FF	ounter (B)	is made D-FF	by us	_	ingle I SR-F			ılting circ) JK-FF	euit is	
39.	The (A) (B) (C) (D)	ALE line of an latch the outp deactivate the find the internlatch the 8 bit	ut of a chip- rupt en	nn I/O in select si nable sta	structi gnal fr tes of t	on into om mo the TR	o an exemory AP in	devices terrupt.		tch.		
40.	Which (A) (C)	ch diode exhibi LED Tunnel diode	its neg	gative res	sistanc	e chara (B) (D)		r				
41.		osed –loop tran				-		•	is give	en by		
	$\frac{Y(s)}{R(s)}$	$\frac{\partial}{\partial s} = \frac{\omega_n^2}{s^2 + 2\varsigma\omega_n s}$	$+\omega_n^2$.	The Sys	stem K	C _v is gi	ven by	7				
	(A)	$\frac{\omega_n}{2\varsigma}$	(B)	1	(C)	∞	(D)	$\frac{2\varsigma}{\omega_n}$				
A						6						EE

42.	A unity feedback system has ope	In loop transfer function $G(s) = \frac{K(s+1.1)(s+2.2)}{s(s+3.3)(s+4.4)}$. For
	K = 0 the closed-loop poles are	
	(A) All real and distinct	(B) One real and two complex conjugate
	(C) All real and repeated	(D) Complex and non repeated

- A unit impulse input to a linear network has a response R(t) and a unit Step input to the 43. same network has response S(t). The response R(t)
 - (A) equals to $\frac{dS(t)}{dt}$

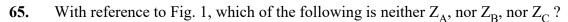
- (B) equals the integral of S(t)
- (C) is the reciprocal of S(t)
- (D) has no relation with S(t)
- 44. Phantom loading for testing of energy meter is used
 - to isolate the current and potential circuits
 - (B) to increase power loss during testing
 - (C) for meters having low current ratings
 - to test meters having a large current rating for which loads may not be available
- 45. Ratio of the rotor reactance X to the rotor resistance R for a two-phase servo motor
 - is equal to that of a normal induction motor
 - is less than that of a normal induction motor (B)
 - is greater than that of a normal induction motor (C)
 - may be less or greater than that of a normal induction motor (D)
- A TRIAC in a single-phase circuit taking V volts and operating at a firing delay angle, α 46. is supplying a resistive load, R. The power loss in the load is
 - (A) $\frac{2V^2}{\pi R} \frac{\sin 2\alpha}{2}$
- (B) $\frac{V^2}{\pi R} \left[\frac{\cos 2\alpha}{2} \right]$
- (C) $\frac{V^2}{\pi R} \left[\pi \alpha + \frac{\sin 2\alpha}{2} \right]$
- (D) $\frac{V^2}{\pi R} \left[\pi + \alpha \frac{\sin 2\alpha}{2} \right]$
- 47. In a boost chopper circuit if V_s , V_θ , L are input voltage, output voltage and inductance, respectively, and when the conducting switch is opened, the rate of change of inductive current is
 - (A) $\frac{V_s}{L}$

- (B) $\frac{V_0}{L}$ (C) $\frac{V_s V_0}{L}$ (D) $\frac{V_s + V_0}{L}$
- In a 3-phase converter circuit during commutation when one SCR in one phase is turned 48. on to turn-off an SCR in another phase, results in

7

(A) voltage notching

harmonic distortion (B)


(C) voltage sag

(D) voltage swell

49.	A sn	ubber circuit is	conne	ected to the po	ower se	emiconduct	tor device	to reduc	e the	
	(A)	turn-on time			(B)					
	(C)	electrical stre	sses		(D)	thermal r	esistance			
50.	Whic	ch phenomenor	is pro	esent in thyris	stors bu	ıt absent in	BJT, MO	SFET ar	nd IGBT ?	
	(A)	forward cond	uction		(B)	latching				
	(C)	forward block	ing		(D)	reverse b	reakdown			
51.	elimi	5 th harmonic co nated by using					hase alteri	nator cai	n be complet	ely
	(A)	$\frac{2}{3}$			(B)	$\frac{4}{5}$				
	(A) (C)	$\frac{5}{6}$			(B) (D)	$\frac{6}{7}$				
52.	In an	adjustable spe	ed ac	drive which c	mantity	z gets reduc	ced ahove	rated sn	eed?	
JZ.	(A)	developed tor		diive willen e	(B)	_		rated sp	cca .	
	` /	reduced starti	-	aue	(D)					
	(-)		8	-1	(-)					
53.	RC t	riggering is pre	eferred	l over resistan	ce trig	gering beca	ause			
	(A)	it provides tri	ggerin	g at a precise	instant	t				
	(B)	it gives a long	ger dui	ation gate pu	lse					
	(C)	it enables trig	gering	gat a larger va	alue of	firing angl	e			
	(D)	it protects the	SCR	against high o	dv/dt					
54.	To m	oving coil meto neasure voltage ument is								
	(A)	9997 Ω	(B)	10000Ω	(C)	997 Ω	(D)	10003	Ω	
55.	instru resist	MMC instrume timent into an tance is 1Ω	amm		scale	deflection	of 100 n			
	(A)	1 22	(B)	1.001 22	(C)	0.3 22	(D)	10 22		
56.		n measuring in ld be initially s				les using d	.c. source,	the gal	vanometer u	sed
	(A)	Cables have current				ace which	draws a l	nigh val	ue of charg	ing
	(B)	Cables have a	low v	alue of initia	l resista	ance				
	(C)	Cables have current	a higl	n value of ca	pacitar	nce which	draws a l	high val	lue of charg	ing
	(D)	Cables have a	low v	alue of capac	itance	and initial	resistance			
lacksquare					8					EE
ــــــــــــــــــــــــــــــــــــــ					3					

57.	The	self inductance of a coil can be mea	sured	using
	(A)	Wien's Bridge	(B)	Schering Bridge
	(C)	Anderson's Bridge	(D)	Wheatstone Bridge
58.	press testin (A)	sure circuit is 8000Ω and that of c	urrent with c (B)	tits marked ratings. The resistance of the coil is 0.1 Ω. The power consumed when urrent circuit excited by a 6 V battery is 5 W 35 W
59.	•	stem shows zero steady-state error t and ∞ steady-state error for parabolatic state.		ep-input, finite steady-state error for Ramp- put. Then the system is of
	_	Type - 0	-	Type – 1
	` '	Type - 2	(D)	Type – 3
60.		r drawing the Root-Locus, the close K can be determined from which of Magnitude criterion alone Angle criterion alone Both Magnitude and Angle criteria Angle of departure and angle of ar	the fo	p poles corresponding to a specified value of ollowing criterion?
61.	The	open-loop transfer function of a unit $G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$	ty-fee	dback system is given by
	The	allowable maximum value of K for	the cl	osed-loop system to remain stable is
	(A)	50	(B)	60
	(C)	70	(D)	80
62.	The	frequencies and voltage used in Die	lectric	heating are
		10-30 MHz, upto 25 kV		50 – 60 Hz, upto 25 kV
	(C)	10 – 30 MHz, upto 100 V	(D)	50 - 60 Hz, 110 V - 230 V
63.	Trap	ezoidal speed-time curve is		
	(A)	an exact representation of the cond	litions	in Main-line traction service.
	(B)	an exact representation of the cond	litions	s in Suburban traction service.
	(C)	a close approximation of the condi	tions	in Suburban traction service.
	(D)	a close approximation of the condi	tions	in Mainline traction service.
64.	Pante	ograph is		
	(A)	a device used to draw Speed-Time		
	(B)	used to supply a.c. to transformer		
	(C)	a part of the control devices in loc	omoti	ves.

(D) used in traction motors for better efficiency.

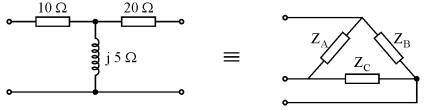


Fig. 1

(A) 10 + i 7.5

(B) 30 - i40

(C) 20 + i 15

(D) 10 + i 15

66. A network is said to be under resonance when the voltage and the current at the network input terminals are

- (A) in phase
- (B) out of phase
- (C) in phase quadrature
- (D) in phase, and have equal magnitudes

(A) Infinity

- (B) Zero
- (C) Very small approaching zero
- (D) Very large approaching infinity

(A) 20

(B) 3.33

(C) 6.66

(D) 60

(A) zero

- (B) 0.5
- (C) between zero and 0.5
- (D) between 0.5 and unity

70. Which of the following statements is incorrect?

- (A) Superposition theorem is useful for Linear and Non-linear circuit analysis when several sources are present in the circuit.
- (B) Thevenin's equivalent network consists of one voltage source in series with an impedance.
- (C) Norton's equivalent network consists of one current source in parallel with an independence.
- (D) When both the load and source impedances are purely resistive, maximum power transfer is achieved under the condition: Load Resistance = Source Resistance

10

PART - B

Direction (Q. 71 to 73): In each of the following questions a statement has been given followed by four inferences A, B, C and D. Find out the inference that definitely follows from the given statement and mark your answer.

staten	nent a	nd mark you	r answer						
71.	'Mo	st of the stud	lents are	of outstand	ling merit.	,			
	(A)	Some of th	e studen	ts are of ou	itstanding	merit.			
	(B)	There are 1	no studen	nts who are	not of out	standing r	nerit.		
	(C)	There are s	some stud	dents who	are below	par.			
	(D)	All student	ts are of o	outstanding	g merit.				
72.	'Mo	st of the pen	s in that	shop are ex	apensive.'				
	(A)	There are n	no cheap	pens in tha	at shop.				
	(B)	Some of th	e pens in	that shop	are expens	sive.			
	(C)	There are s	some che	ap pens in	that shop.				
	(D)	Camlin per	ns in that	shop are e	expensive.				
73.	'Abi	lity is poor 1	nan's we	ealth.' This	means.				
	(A)	A poor ma	n is alwa	ys able.					
	(B)	A poor ma	n has the	ability to	earn wealt	h.			
	(C)	A wealthy	man is a	lways able					
	(D)	A poor ma	n can ear	n wealth if	f he has ab	ility.			
74.		AINT is code	ed as 741	28 and EX	CEL is co	oded as 93:	596, then l	now would	you encoded
	(A)	455978	(B)	547978	(C)	554978	(D)	455968	
75.	Find	the missing	term in	the followi	ng series :				
	240,	, 120, 40	0, 10, 2.						
	(A)	240	(B)	220	(C)	182	(D)	200	
A					11				EE

76.	In the series 2, 6	, 18, 54,, what w	ill be the 8 th term?			
	(A) 4370	(B) 4374	(C) 7443	(D)	7434	
77.	If N is the broth	er of B, M is the sist	ter of N, J is the brot	her of P a	nd P is the daught	er of

78. A group consists of both boys and girls is 100. ₹ 312 is distributed among the boys and girls such that each boy gets ₹ 3.60 and each girl gets ₹ 2.40. The number of girls are

(A) 88

(A) B

B. Who is the uncle of J?

(B) 40

(B) M

(C) 60

(C) P

(D) 65

(D) N

79. The sum of three consecutive odd numbers is always divisible by

> (I) 2

(II) 3

(III) 5

(IV) 6

(A) I and II

(B) Only II

(C) Only I and III (D) Only II and IV

If the L.C.M. of two numbers is 48 and the numbers are in ratio 3:4, then the sum of the 80. numbers is

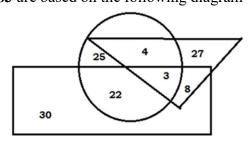
(A) 28

(B) 32

(C) 40

(D) 64

81. Which one is the same as Coal, Ebony and Soot?


(A) Blush

(B) Raven

(C) Ash

(D) Rust

Direction: Questions **82** & **83** are based on the following diagram:

The triangle represents 'Doctors', the circle represents 'Players' and the rectangle represents 'Artists'.

82. How many artists are players?

(A) 22

(B) 25

(C) 30

(D) 29

83. How many doctors are players but not artists?

(A) 7

(B) 27

(C) 4

(D) 15

84.	How many numbers from 1 to 100 are such each which is divisible by 8 and whose at
	least one digit is 8?

(A) Four

(B) Five

(C) Eight

(D) Six

85. In the following group of letters, one of them is different from the rest. Find out that group.

(A) BQCR

(B) DSEU

(C) FVGW

(D) HXIY

86. What will be the next term in the series: DCXW, FEVU, HGTS,

(A) LKPO

(B) ABYZ

(C) JIRQ

(D) LMRS

Direction (Q. 87 to 89): The problems below contain question and two statements of certain data. You have to decide whether the data given in the statements are sufficient for answering the questions. The correct answer is

- (A) If statements (I) alone is sufficient but statement (II) alone is not sufficient to answer.
- (B) If statements (II) alone is sufficient but statement (I) alone is not sufficient to answer.
- (C) If both statements (I) and (II) together are sufficient but neither of the statement alone is sufficient to answer the question.
- (D) If each statement alone is sufficient to answer the question.

87. Is cone A is similar to cone B?

- (I) The surface area of A is 9 times the surface area of B.
- (II) The volume of A is 9 times the volume of B.

88. Is
$$x > 1$$
?

(I)
$$\sqrt{x + \frac{x}{x^2 - 1}} = x \sqrt{\frac{x}{x^2 - 1}}$$

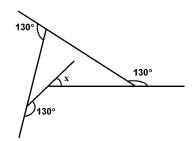
(II)
$$x^3 + 1 = 0$$

89. The total expenses of two individuals X and Y are ₹ 3,600 and ₹ P respectively. They are represented with the help of a pie-chart. What is P?

13

- (I) The radius of the circle representing X's total expenditure is 4.2 cm and that of Y's total expenditure is 3.5 cm.
- (II) The ratio of the radii of the two circles is 4:1.

90.	Three friends A, B and C shared chocolates from a bowl. A took $1/3^{\rm rd}$ of the chocolates, but returned four to the bowl. B took $1/4^{\rm th}$ of what was left but returned three chocolates to the bowl. C took half of the remainder but return two back into the bowl. If the bowl has 17 chocolates left, how many chocolates were originally there in the bowl?								
	(A)	32	(B)	48	(C)	64	(D)	52	
91.	There are nine bags of sugar looking alike, eight of which have equal weight and one is slightly heavier. The weighing balance is of unlimited capacity. Using this balance, the minimum number of weighings required to identify the heavier bag is								
	(A)	5	(B)	4	(C)	3	(D)	2	
92.	A person starts from a point S, goes South for 4 km and West for 3 km to reach a point T. He then turns to face point S and goes 18 km in that direction. He then goes South for 12 km. How far is he from point S, in which direction should he go to reach point S?								
	(A)	5 km, East	(B)	5 km, West	(C)	7 km, East	(D)	7 km, West	
93.	The number of 3-digit numbers such that the digit 2 is never to the immediate left of 1 is								
	(A)	881	(B)	880	(C)	891	(D)	890	
94.	4 men can finish a work in 6 days, 8 women can finish the same work in 15 days, 10 children can finish the same work in 24 days. How long a team of 1 man, 2 women and 2 children will take to finish the same work?								
	(A)	12	(B)	14	(C)	15	(D)	16	
95.	How	How many two-digit odd numbers can be composed from the nine digits 1, 2, 3,,9							
	(A)	36	(B)	40	(C)	42	(D)	45	
A					14			EE	


96. If the sum of the next two numbers in the following series is 'x', then the value of log_2x is

 $2, -4, 8, -16, 32, -64, 128, \dots$

- (A) 7
- (B) 8
- (C) 9
- (D) 12
- **97.** There is an inner circle and an outer circle around a square as shown in the figure. What is the ratio of area of the outer circle to that of the inner circle?

- (A) $\sqrt{2}$
- (B) 2
- (C) $2\sqrt{2}$
- (D) $\sqrt{3/2}$
- 98. In what ratio must rice at ₹ 9.30 per kg be mixed with rice at ₹ 10.80 per kg so that the mixture is worth ₹ 10 per kg?
 - (A) 8/7
- (B) 7/8
- (C) 5/6
- (D) 6/5
- 99. A person bought a shirt at 10% discount and sold it to his friend at a loss of 10%. If his friend paid him ₹ 729 for the shirt, what was the undiscounted price of the shirt?
 - (A) ₹800
- (B) ₹911
- (C) ₹ 900
- (D) ₹911.25
- 100. What is the angle 'x' in the schematic diagram given below?

- (A) 50°
- (B) 60°
- (C) 70°
- (D) 30°

SPACE FOR ROUGH WORK