MATHEMATICS

101. In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B and 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspaper, then number of families which buy A only is

a)	3100	b)	3300
``	2000	1)	1 400

- c) 2900 d) 1400
- 102. if $F(x) = \left(f\left(\frac{x}{2}\right)\right)^2 + \left(g\left(\frac{x}{2}\right)\right)^2$ where f''(x) = -f(x)and g(x) = f'(x) and given that F(5) = 5, then F(10) is equal to

a)	5	b)	10
c)	0	d)	15

103. Let f(x+y) = f(x) f(y) for all x and y. Supposef(5) = 2 and f'(0) = 3. Find f'(5).a) 3b) 6c) 9d) 0.6

- 104. If |z| = 1 and $\omega = \frac{z-1}{z+1}$ (where $z \neq -1$), then Re (ω) is a) 0 b) $\frac{1}{|z+1|^2}$ c) $\left|\frac{z}{|z+1|} \cdot \frac{1}{|z+1|^2}$ d) $\frac{\sqrt{2}}{|z+1|^2}$
- 105. Let z_1 ans z_2 be two roots of the equation $z^2+az+b=0,z$ being complex. Further, assume that the origin z_1 and z_2 form an equilateral triangle, then

$a)a^2=b$	b) $a^2 = 2b$
c) $a^2 = 3b$	$d)a^2 = 4b$

- 106. For all complex numbers z_1, z_2 satisfying $|z_1|=12$ and $|z_2-3-4i|=5$, the minimum value of $|z_1-z_2|$ is a)0 b)2 c)7 d)17
- 107. Let λ and α be real, Find the set of all values of λ for which the system of linear equations $\lambda x + (\sin \alpha) y + (\cos \alpha) z = 0$ $x + (\cos \alpha) y + (\sin \alpha) z = 0$ $-x + (\sin \alpha) y - (\cos \alpha) z = 0$ has a nontrivial solution. For $\lambda = 1$, find the value

of α.

a) $n\pi \pm \pi/8 + \pi/8$ b) $n\pi \pm \pi/4 + \pi/4$ c) $\pm n\pi + \pi/4 + \pi/4$ d) $\pm n\pi + \pi/4 + \pi/8$

108. If p and q are the roots of
$$x^2 + px + q = 0$$
, thena) $p = 1, q = -2$ b) $p = -2, q = 1$ c) $p = 1, q = 0$ d) $p = -2, q = 0$

109. If $a_1, a_2, \dots, a_n, \dots$, are in GP then the determinant

110.

$$Let A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} and (10)B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}.$$
 If B is
the inverse of marix A, them α
a) -2 b) 1
c) 2 d) 5

- 111. If the system of equations x+ay=0, az+y=0and ax+z=0 has infinite solution, then values of a is
 - a) -1
 b) 1

 c) 0
 d) no real value
- 112. Let M and N be two even order non-singular skew-symmetric matrices such that MN=NM. If P^{T} denotes the transpose of P, then $M^{2} N^{2} (M^{T}N)^{-1} (MN^{-1})^{T}$ is equal to a) M^{2} b)-N² c) -M² d) MN
- 113. The value of the determination

$1 a a^{2}-bc$	
$1 \ b \ b^2 - ac$	is
$\begin{vmatrix} 1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab \end{vmatrix}$	
a) 1	b) 3
c) 100	d) 0

- 114. Numbers greater than 1000 but not greater than 4000 which can be formed with the digits 0, 1, 2, 3, 4 (repetition of digits is allowed), are a) 350 b) 375 c) 450 d) 576
- 115. How many words can be formed with the letters of the words MATHEMATICS by rearranging them

a)
$$\frac{11!}{2! \, 2!}$$

b) $\frac{11!}{2!}$
c) $\frac{11!}{2! \, 2! \, 2!}$
d) $11!$

116. In how many ways can 6 persons be selected from 4 officers and 8 constables, if at least one officer is to be included

> a) 224 b) 672 c) 896 d)none of these

- 117. The product of n positive numbers is unity. Then their sum is
 a) a positive integer
 b) divisible by n
 c) equal to n+1/n
 d) never less than n.
- 118. If x is positive, the first negative term in the expansion of $(1+x)^{27/5}$ is a) 7th term b) 5th term c) 8th term d) 6th term
- 119. Let x be the arithmetic mean and y, z be the two geometric means between any two positive numbers. Then $\frac{y^3 + z^3}{xyz} =$
 - a) 4 b) 0.2 c) 2 d) 20

120. Sum of the infinite series $1+2+\frac{1}{2!}+\frac{2}{3!}+\frac{1}{4!}+\frac{2}{5!}+$ is

- a) e^{2} b) $e + e^{-1}$ c) $\frac{e - e^{-1}}{2}$ d) $\frac{3e - e^{-1}}{2}$
- 121. The interior angles of a polygon are in A.P. the smallest angle is 120° and the common difference is 5° . Find the number of sides of the polygon.
 - a) 16 b) 9 c) 4 d) 12
- 122. If the sum of first n terms of an A.P. is cn^2 , then the sum of squares of these n terms is

a)
$$\frac{n(4n^2-1)c^2}{6}$$

b) $\frac{n(4n^2+1)c^2}{3}$
c) $\frac{n(4n^2-1)c^2}{3}$
d) $\frac{n(4n^2+1)c^2}{6}$

123. The domain of
$$f(x) = \frac{\log_2 (x+3)}{x^2+3x+2}$$
 is

a) R-
$$\{-1,-2\}$$

c) R- $\{-1,-2,-3\}$
b) $(-2,+\infty)$
d) $(-3,+\infty)-\{-1,-2\}$

.

124. Let
$$g(x) = 1 + x - [x]$$
 and $f(x) = \begin{cases} -1, x < 0 \\ 0, x = 0, \text{ then for all} \\ 1, x > 0 \end{cases}$
 $x, f(g(x))$ is equal to

a) x b) 1 c) f(x) d) g(x)

125. For
$$x > .0$$
, $\lim_{x \to 0} [(\sin x)^{1/x} + (1/x)^{\sin x}]$ is
a) 0 b) -1
c) 1 d) 2

126.
$$\lim_{x \to \frac{\pi}{4}} \frac{2}{x^2 - \frac{\pi^2}{16}} \text{ equals}$$

a) $\frac{8}{\pi} f(2)$ b) $\frac{2}{\pi} f(2)$
c) $\frac{2}{\pi} f(1/2)$ d) $4f(2)$.

127. If
$$f(x) = \frac{e^x}{1+e^x}$$
, $I_1 = \int_{f(-a)}^{f(a)} xg\{x(1-x)\} dx$, and
 $I_2 = \int_{f(-a)}^{f(a)} g\{x(1-x)\} dx$, then value of I_2/I_1 is
a) 2 b) -3

c) -1 d) 1

128. Let f(x) be a function satisfying f'(x) = f(x)with f(0) = 1 and g(x) be a function that satisfies $f(x) + g(x) = x^2$. Then the value of the integral $\int_a^b f(x) g(x) = x^2$. Then the value of the integral $\int_a^b f(x) g(x) dx$, is

a)
$$e - \frac{e^2}{2} - \frac{5}{2}$$
 b) $e + \frac{e^2}{2} - \frac{3}{2}$
c) $e - \frac{e^2}{2} - \frac{3}{2}$ d) $e + \frac{e^2}{2} + \frac{5}{2}$

129. The value of
$$\int_{a}^{\pi/2} \frac{dx}{1+\tan^3 x}$$
 is

a) 0 b) 1 c) $\pi/2$ d) $\pi/4$

130. If
$$\int_{0}^{x} f(t) dt = x + \int_{x}^{1} tf(t) dt$$
 then the value of $f(1)$ is
a) $1/2$ **b)** 0

c) 1 d) -1/2

131. The value of
$$\int_{-2}^{2} |1-x^2| dx$$
 is.....

a)	8	b)	14
c)	4	d)	40

- 132. The general solution of the equation $(e^{y} + 1)$ $\cos x dx + e^{y} \sin x dy = 0$ is
 - a) $(e^{y}+1)\cos x=c$ b) $(e^{y}-1)\sin x=c$
 - c) $(e^{y}+1)\sin x=c$ d) None of these
- 133. If xdy = y(dx + ydy), y > 0 and y(1) = 1, then y(-3) is equal to

a)	1	b)	3
c)	5	d)	-1

134. The integration factor of the differential equation

$$\frac{dy}{dx} + \frac{1}{x} y=3x \text{ is}$$
a) x b) ln x
c) 0 d) ∞

- 135. The solution of the differential equation $x \frac{dy}{dx} = y(\log y - \log x + 1)$ is **a)** $y = xe^{cx}$ **b)** $y + xe^{cx} = 0$ **c)** $y + e^{x} = 0$ **d)** None of these
- 136. The eccentricity of an ellipse with its centre at the origin, is 1/2 if one of the directrices is x = 4, then the equation of the ellipse is
 - a) $3x^2 + 4y^2 = 1$ b) $3x^2 + 4y^2 = 12$ c) $4x^2 + 3y^2 = 12$ d) $4x^2 + 3y^2 = 1$
- 137. The greatest distance of the point P (10, 7) from the circle $x^2 + y^2 - 4x - 2y - 20 = 0$ is
 - a) 10 unit **b)** 15 unit
 - c) 5 unit d) None of these
- 138. The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x = 4, y = 4and the coordinate axes. If s_1 , s_2 s_3 are respectively the areas of these parts numbered from top to bottom, then $s_1 : s_2 : s_3$ is
 - a)1:1:1b)2:1:2c)1:2:3d)1:2:1
- 139. The area of the triangle formed by the line $4x^{2}$: 9xy - 9y² = 0 and x = 2 is
 - a) 2 b) 3
 - c) 10/3 d) 20/3

- 140. The value of k so that $x^{2} + y^{2} + kx + 4y + 2 = 0$ and $2(x^{2}+y^{2})-4x-3y+k=0$ cut orthogonally is a) $\frac{10}{3}$ b) $\frac{-8}{3}$ c) $\frac{-10}{3}$ d) $\frac{-8}{3}$
- 141. The equation to the circle with origin as center passing through the vertices of an equilateral triangle whose median is of length 3a is
 - a) $x^2 + y^2 = 9a^2$ b) $x^2 + y^2 = 16a^2$
 - c) $x^{2} + y^{2} = a^{2}$ d) None of these
- 142. A square is inscribed in the circle $x^2+y^2-2x+4y-93=0$ with its sides parallel to the coordinate axes. The coordinates of its vertices are
 - **a**) (-6, -9), (-6, 5), (8, -9) and (8, 5)
 - b) (-6,9), (-6, -5), (8, -9), and (8, 5)
 - c) (-6, -9), (-6, 5), (8, 9), and (8, 5)
 - d) (-6, -9), (-6, 5), (8, -9), and (8, -5)
- 143. The points A(5,-1,1); B(7,-4,7); C(1, -6,10) and D(-1,-3,4) are vertices of a
 - a) Square **b)** Rhombus
 - c) Rectangle d) None of these
- 144. Find the equation of the plane passing through (2, 1,0), (4, 1, 1), (5, 0, 1). Find the point Q such that its distance from the plane is equal to the distance of point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.
 - a) 9/2 cubic unit b) 9/4 cubic unit
 - c) 4 cubic unit d) 2/9 cubic unit

- 145. The points D,E,F divide BC, CA and AB of the triangle ABC in the ratio 1 : 4, 3 : 2 and 3 : 7 respectively and the point K divides AB in the ratio 1:3, then $(\overrightarrow{AD+BE+CF})$: \overrightarrow{CK} is equal to a) 1: 1 b) 2 : 5 c) 5 : 2 d) None of these
- 146. If a, b, c are non-coplanar unit vectors such that $ax(bxc) = \frac{b+c}{\sqrt{2}}$, then the angle between a and b is a) $\pi/4$ b) $\pi/2$ c) $3\pi/4$ d) π
- 147. Three numbers are chosen at random without replacement from {1,210}.The probability that the minimum of the chosen numbers is 3, or their maximum is 7, is

a) 13/60	b) 13/30
c) 60/13	d) 60/3

.....

148. Out of 3n consecutive natural numbers, 3 natural numbers are chosen at random without replacement. The probability that the sum of the chosen numbers is divisible by 3 is

a)
$$\frac{n(3n^2 - 3n + 2)}{2}$$
 b) $\frac{(3n^2 - 3n + 2)}{2(3n - 1)(3n - 2)}$
c) $\frac{(3n^2 - 3n + 2)}{(3n - 1)(3n - 2)}$ d) $\frac{n(3n - 1)(3n - 2)}{3(n - 1)}$

149. one bag contains 5 white and 4 black balls. Another bag contains 7 white and 9 black balls. A ball is transferred from the first bag to the second and then a ball is drawn from second. The probability that the ball is white, is

a) 8/17	b) 40/153
c) 5/9	d) 4/9

150. If $\alpha + \beta = \pi/2$ and $\beta + \gamma = \alpha$, then tan α equals

a) $2(\tan\beta + \tan\gamma)$ b) $\tan\beta + \tan\gamma$

c) $\tan\beta + 2\tan\gamma$ d) $2\tan\beta + \tan\gamma$